# ============================================
# Binary Search Tree (BST) - Full Implementation
# ============================================
class Node:
def __init__(self, key):
self.key = key
self.left = None
self.right = None
class BST:
def __init__(self):
self.root = None
# --------------------------------------
# INSERT
# --------------------------------------
def insert(self, key):
self.root = self._insert_recursive(self.root, key)
def _insert_recursive(self, node, key):
if node is None:
return Node(key)
if key < node.key:
node.left = self._insert_recursive(node.left, key)
else:
node.right = self._insert_recursive(node.right, key)
return node
# --------------------------------------
# HEIGHT OF TREE
# --------------------------------------
def height(self, node=None):
if node is None:
node = self.root
return self._height_recursive(node)
# Private helper used for recursion
def _height_recursive(self, node):
if node is None:
return -1
left_h = self._height_recursive(node.left)
right_h = self._height_recursive(node.right)
return 1 + max(left_h, right_h)
# --------------------------------------
# SEARCH
# --------------------------------------
def search(self, key):
return self._search_recursive(self.root, key)
def _search_recursive(self, node, key):
if node is None or node.key == key:
return node
if key < node.key:
return self._search_recursive(node.left, key)
else:
return self._search_recursive(node.right, key)
# --------------------------------------
# MINIMUM
# --------------------------------------
def find_min(self, node=None):
if node is None:
node = self.root
while node.left:
node = node.left
return node
# --------------------------------------
# MAXIMUM
# --------------------------------------
def find_max(self, node=None):
if node is None:
node = self.root
while node.right:
node = node.right
return node
# --------------------------------------
# INORDER TRAVERSAL (sorted)
# --------------------------------------
def inorder(self):
result = []
self._inorder_recursive(self.root, result)
return result
def _inorder_recursive(self, node, result):
if node:
self._inorder_recursive(node.left, result)
result.append(node.key)
self._inorder_recursive(node.right, result)
# --------------------------------------
# PREORDER TRAVERSAL
# --------------------------------------
def preorder(self):
result = []
self._preorder_recursive(self.root, result)
return result
def _preorder_recursive(self, node, result):
if node:
result.append(node.key)
self._preorder_recursive(node.left, result)
self._preorder_recursive(node.right, result)
# --------------------------------------
# POSTORDER TRAVERSAL
# --------------------------------------
def postorder(self):
result = []
self._postorder_recursive(self.root, result)
return result
def _postorder_recursive(self, node, result):
if node:
self._postorder_recursive(node.left, result)
self._postorder_recursive(node.right, result)
result.append(node.key)
# --------------------------------------
# DELETE NODE
# --------------------------------------
def delete(self, key):
self.root = self._delete_recursive(self.root, key)
def _delete_recursive(self, node, key):
if node is None:
return node
if key < node.key:
node.left = self._delete_recursive(node.left, key)
elif key > node.key:
node.right = self._delete_recursive(node.right, key)
else:
# Case 1: No child
if node.left is None and node.right is None:
return None
# Case 2: One child
elif node.left is None:
return node.right
elif node.right is None:
return node.left
# Case 3: Two children
else:
successor = self.find_min(node.right)
node.key = successor.key
node.right = self._delete_recursive(node.right, successor.key)
return node
# --------------------------------------
# COUNT NODES
# --------------------------------------
def count_nodes(self, node=None):
if node is None:
node = self.root
if node is None:
return 0
return 1 + self.count_nodes(node.left) + self.count_nodes(node.right)
# --------------------------------------
# VALIDATE BST
# --------------------------------------
def is_valid_bst(self):
return self._validate(self.root, float('-inf'), float('inf'))
def _validate(self, node, low, high):
if node is None:
return True
if not (low < node.key < high):
return False
return (self._validate(node.left, low, node.key) and
self._validate(node.right, node.key, high))
# --------------------------------------
# SUCCESSOR
# --------------------------------------
def successor(self, key):
node = self.search(key)
if node is None:
return None
# Case 1: right subtree exists
if node.right:
return self.find_min(node.right)
# Case 2: climb ancestors
succ = None
cur = self.root
while cur:
if key < cur.key:
succ = cur
cur = cur.left
elif key > cur.key:
cur = cur.right
else:
break
return succ
# --------------------------------------
# PREDECESSOR
# --------------------------------------
def predecessor(self, key):
node = self.search(key)
if node is None:
return None
# Case 1: left subtree exists
if node.left:
return self.find_max(node.left)
# Case 2: climb ancestors
pred = None
cur = self.root
while cur:
if key > cur.key:
pred = cur
cur = cur.right
elif key < cur.key:
cur = cur.left
else:
break
return pred
tree = BST()
for x in [50, 30, 70, 20, 40, 60, 80, 100, 42,10,55]:
tree.insert(x)
print("Inorder:", tree.inorder())
print("Postorder:", tree.postorder())
print("Postorder:", tree.preorder())
print("Search 40:", tree.search(40))
print("Min:", tree.find_min().key)
print("Max:", tree.find_max().key)
print("Height:", tree.height())
print("Successor of 50:", tree.successor(50).key)
print("Predecessor of 50:", tree.predecessor(50).key)
tree.delete(70)
print("After deletion:", tree.inorder())