#ifdef LOCAL
#include "algo/dbg.hpp"
#else
#include "bits/stdc++.h"
#define dbg(...)
#endif
using namespace std;
#define endl '\n'
// #define int long long
#define sz(x) (int) x.size()
#define pb push_back
// #define all(v) v.begin(), v.end()
#define rep(i,a,b) for (int i = (a); i < (b); ++i)
#define rrep(i,a,b) for (int i = (a); i >= (b); --i)
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
template<class T> bool ckmin(T& a, T b){ return b < a ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, T b){ return b > a ? a = b, 1 : 0; }
template<class T> istream& operator>>(istream&i,vector<T>&v){for(T&x:v)i>>x;return i;}\
#include<bits/stdc++.h>
using namespace std;
//typedef complex<double> CD;
struct CD {
double x, y;
CD(double x=0, double y=0) :x(x), y(y) {}
CD operator+(const CD& o) { return {x+o.x, y+o.y};}
CD operator-(const CD& o) { return {x-o.x, y-o.y};}
CD operator*(const CD& o) { return {x*o.x-y*o.y, x*o.y+o.x*y};}
void operator /= (double d) { x/=d; y/=d;}
double real() {return x;}
double imag() {return y;}
};
CD conj(const CD &c) {return CD(c.x, -c.y);}
typedef long long LL;
const double PI = acos(-1.0L);
namespace FFT {
int N;
vector<int> perm;
vector<CD> wp[2];
void precalculate(int n) {
assert((n & (n-1)) == 0);
N = n;
perm = vector<int> (N, 0);
for (int k=1; k<N; k<<=1) {
for (int i=0; i<k; i++) {
perm[i] <<= 1;
perm[i+k] = 1 + perm[i];
}
}
wp[0] = wp[1] = vector<CD>(N);
for (int i=0; i<N; i++) {
wp[0][i] = CD( cos(2*PI*i/N), sin(2*PI*i/N) );
wp[1][i] = CD( cos(2*PI*i/N), -sin(2*PI*i/N) );
}
}
void fft(vector<CD> &v, bool invert = false) {
if (v.size() != perm.size()) precalculate(v.size());
for (int i=0; i<N; i++)
if (i < perm[i])
swap(v[i], v[perm[i]]);
for (int len = 2; len <= N; len *= 2) {
for (int i=0, d = N/len; i<N; i+=len) {
for (int j=0, idx=0; j<len/2; j++, idx += d) {
CD x = v[i+j];
CD y = wp[invert][idx]*v[i+j+len/2];
v[i+j] = x+y;
v[i+j+len/2] = x-y;
}
}
}
if (invert) {
for (int i=0; i<N; i++) v[i]/=N;
}
}
void pairfft(vector<CD> &a, vector<CD> &b, bool invert = false) {
int N = a.size();
vector<CD> p(N);
for (int i=0; i<N; i++) p[i] = a[i] + b[i] * CD(0, 1);
fft(p, invert);
p.push_back(p[0]);
for (int i=0; i<N; i++) {
if (invert) {
a[i] = CD(p[i].real(), 0);
b[i] = CD(p[i].imag(), 0);
}
else {
a[i] = (p[i]+conj(p[N-i]))*CD(0.5, 0);
b[i] = (p[i]-conj(p[N-i]))*CD(0, -0.5);
}
}
}
vector<LL> multiply(const vector<LL> &a, const vector<LL> &b) {
int n = 1;
while (n < a.size()+ b.size()) n<<=1;
vector<CD> fa(a.begin(), a.end()), fb(b.begin(), b.end());
fa.resize(n); fb.resize(n);
// fft(fa); fft(fb);
pairfft(fa, fb);
for (int i=0; i<n; i++) fa[i] = fa[i] * fb[i];
fft(fa, true);
vector<LL> ans(n);
for (int i=0; i<n; i++) ans[i] = round(fa[i].real());
return ans;
}
const int M = 7340033, B = sqrt(M)+1;
vector<LL> anyMod(const vector<LL> &a, const vector<LL> &b) {
int n = 1;
while (n < a.size()+ b.size()) n<<=1;
vector<CD> al(n), ar(n), bl(n), br(n);
for (int i=0; i<a.size(); i++) al[i] = a[i]%M/B, ar[i] = a[i]%M%B;
for (int i=0; i<b.size(); i++) bl[i] = b[i]%M/B, br[i] = b[i]%M%B;
pairfft(al, ar); pairfft(bl, br);
// fft(al); fft(ar); fft(bl); fft(br);
for (int i=0; i<n; i++) {
CD ll = (al[i] * bl[i]), lr = (al[i] * br[i]);
CD rl = (ar[i] * bl[i]), rr = (ar[i] * br[i]);
al[i] = ll; ar[i] = lr;
bl[i] = rl; br[i] = rr;
}
pairfft(al, ar, true); pairfft(bl, br, true);
// fft(al, true); fft(ar, true); fft(bl, true); fft(br, true);
vector<LL> ans(n);
for (int i=0; i<n; i++) {
LL right = round(br[i].real()), left = round(al[i].real());;
LL mid = round(round(bl[i].real()) + round(ar[i].real()));
ans[i] = ((left%M)*B*B + (mid%M)*B + right)%M;
}
return ans;
}
}
template<int MOD, int RT> struct Mint {
static const int mod = MOD;
static constexpr Mint rt() { return RT; } // primitive root for FFT
int v; explicit operator int() const { return v; } // explicit -> don't silently convert to int
Mint():v(0) {}
Mint(ll _v) { v = int((-MOD < _v && _v < MOD) ? _v : _v % MOD); if (v < 0) v += MOD; }
bool operator==(const Mint& o) const { return v == o.v; }
friend bool operator!=(const Mint& a, const Mint& b) { return !(a == b); }
friend bool operator<(const Mint& a, const Mint& b) { return a.v < b.v; }
Mint& operator+=(const Mint& o) { if ((v += o.v) >= MOD) v -= MOD; return *this; }
Mint& operator-=(const Mint& o) { if ((v -= o.v) < 0) v += MOD; return *this; }
Mint& operator*=(const Mint& o) { v = int((ll)v*o.v%MOD); return *this; }
Mint& operator/=(const Mint& o) { return (*this) *= inv(o); }
friend Mint pow(Mint a, ll p) {
Mint ans = 1; assert(p >= 0);
for (; p; p /= 2, a *= a) if (p&1) ans *= a; return ans; }
friend Mint inv(const Mint& a) { assert(a.v != 0); return pow(a,MOD-2); }
Mint operator-() const { return Mint(-v); }
Mint& operator++() { return *this += 1; }
Mint& operator--() { return *this -= 1; }
friend Mint operator+(Mint a, const Mint& b) { return a += b; }
friend Mint operator-(Mint a, const Mint& b) { return a -= b; }
friend Mint operator*(Mint a, const Mint& b) { return a *= b; }
friend Mint operator/(Mint a, const Mint& b) { return a /= b; }
friend ostream& operator<<(ostream &out, const Mint &m) {return out << m.v;}
friend istream& operator>>(istream &in, Mint &m) {long long x; in >> x; m = Mint(x); return in;}
};
const int MOD = 7340033; // change accordingly
using mint = Mint<MOD,5>;
vector<mint> fact(1, 1);
vector<mint> inv_fact(1, 1);
mint choose(int n, int k) {
if (k < 0 || k > n) {
return 0;
}
while ((int) fact.size() < n + 1) {
fact.push_back(fact.back() * (int) fact.size());
inv_fact.push_back(1 / fact.back());
}
return fact[n] * inv_fact[k] * inv_fact[n - k];
}
void solve(int tc = 0) {
int n; cin >> n;
vi cnt(4, 0);
rep(i, 0, n){
int x, y; cin >> x >> y;
if(x > 0 and y > 0) cnt[0]++;
if(x > 0 and y < 0) cnt[3]++;
if(x < 0 and y > 0) cnt[1]++;
if(x < 0 and y < 0) cnt[2]++;
}
int a = min(cnt[0], cnt[2]);
int b = min(cnt[1], cnt[3]);
vector<ll> polya(a+1);
vector<ll> polyb(b+1);
for(int i = 0; i <= a; i++){
polya[i] = 1LL*int(choose(cnt[0], i))*1LL*int(choose(cnt[2], i));
}
for(int i = 0; i <= b; i++){
polyb[i] = 1LL*int(choose(cnt[1], i))*1LL*int(choose(cnt[3], i));
}
// auto it = convMod<7340033>(polya, polyb);
vector<ll> it = FFT::anyMod(polya, polyb);
cout << "Case " << tc+1 << ":\n";
while(it.size() <= n) it.pb(0LL);
for(int i = 1; i <= n; i++){
if(i&1){
cout << 0;
}else{
cout << it[i/2];
}
cout << " \n"[i == n];
}
}
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL); cout.tie(NULL);
int tc = 1;
cin >> tc;
for(int t = 0; t < tc; t++) solve(t);
}